
NASA-CR-205329 "/_ _'"" "

Software Development Technologies for Reactive,

Real-Time, and Hybrid Systems

1996 Progress Report

NASA grant NAG2-892

P.I. : Professor Zohar Manna

Computer Science Department

Stanford University

Stanford, CA. 94301-9045

Objective

The research is directed towards the design and implementation of a com-

prehensive deductive environment for the development of high-assurance

systems, especially reactive (concurrent, real-time, and hybrid) systems. Re-

active systems maintain an ongoing interaction with their environment, and

are among the most difficult to design and verify. The project aims to pro-

vide engineers with a wide variety of tools within a single, general, formal

framework in which the tools will be most effective. The entire development

process is considered, including the construction, transformation, validation,

verification, debugging, aud maintenance of computer systems. The goal is

to automate the process as much as possible and reduce the errors that

pervade hardware and software development.

Approach

The on-going research proceeds simultaneously on two fronts: theoretical in-

vestigations and incremental implementation. Several parts of the proposed

toolkit can be realized only after developing the necessary theoretical basis.

The formal framework is based on the generic coniputational model of

Transition Systems, specialized to Fair Transition Systems, Timed Transi-

tion Systems, and Phase Transition Systems for the classes of concurrent,

real-time, and hybrid systems, respectively. These models cover both hard-

ware and software systems, and underlie all the proposed languages and



methods. The most complexof thesemodels,phasetransition systems,
combinesdiscretetransition systemswith continuousprocesseswhosepa-
rametersarecontrolledby differentialequations.

Ontheimplementationfront, the basicverificationenvironmentprovides
a uniquecombinationof tools,and is beingusedasthe basisfor prototype
componentsthat test and validatenew methodsand approaches.A soft-
wareorhardwaredesignercancommunicatewith thedeductiveenvironment
throughtwo classesof languages:systemcomponentscanbedescribedin a
graphicallanguagethat extendsStatecharts;systemspecificationsand in-
terfacesare describedin TemporalLogic,extendedto deal with real-time
and continuouschange.

Progress for 1996

Our research in 1996 focused on the following areas:

Combining Deductive and Algorithmic Verification: The two

main approaches to verifying temporal properties of reactive systems

are deductive verification on the one hand, and model checking on the

other. (We summarize these in [SUM96b].) In the deductive approach,

the validity of a given temporal property over a given program is re-

duced to the general validity of a set of first-order formulas, through

the use of a given set of verification rules. In model checking, the

state space of the program is systematically explored in search for

a computation that violates the property being verified, until such a

counterexample is found or it is shown that it cannot exist.

Model checking procedures are usually automatic, while deductive ver-

ification often relies on user interaction to identiL, suitable lemmas and

auxiliary assertions. However, model checking is usually applicable

only to systems with a finite, fixed number of states, while the de-

ductive approach can verify infinite-state systems and parameterized

finite-state systems of arbitrary size.

In [SUM96a], we present an extension of classical tableau-based model

checking procedures to the case of infinite-state systems, using deduc-

tive methods in an incremental construction of the behavior graph.

Logical formulas are used to represent infinite sets of states in an ab-

straction of this graph, which is repeatedly refined in the search for

a counterexample computation, ruling out large portions of the graph



beforethey areexpandedto tile state-level. This can lead to large
savings,evenin the caseof finite-statesystems.Only localconditions
needto becheckedat eachstep,andpreviouslyprovenpropertiescan
beusedto further constrainthe search.This frameworkis currently
beingextendedto incorporatewell-foundedordersand progressmea-
suresaswell.

In [dAM96]wepresenta methodologyfor the verificationof tempo-
ral propertiesof systemsbasedon the gradual construction and al-

gorithmic checking of fairness diagrams. These are abstractions of

the system and its progress properties, and have a simple graphical

representation. A proof of a temporal property consists of a chain

of diagram transformations, starting from a diagram representing the

original system and ending with a diagram that either corresponds di-

rectly to the specification, or that can be shown to satisfy it by purely

algorithmic methods. Each diagram transformation captures a natu-

ral step of the gradual process of system analysis and proof discovery.

In [dAKM97] we extend this approach to hybrid systems (see below).

• Hierarchical Verification Diagrams: Graphical formalisms can

facilitate the task of guiding and understanding a deductive proof.

Verification Diagrams, introduced by Manna and Pnueli, provide a

graphical representation of the direct proof of temporal properties.

We previously extended this framework to arbitrary temporal formu-

las, using generalized verification diagrams. In [BMS96], we present

a formal framework that allows the combination of multiple diagrams

into one proof, thus facilitating incremental proof construction of com-

plex systems and properties. In addition, we extend the applicability of

verification diagrams to properties specified by existentially quantified

temporal formulas, which are strictly more expressive than quantifier-

free temporal formulas.

• Graphical Formalisms: In [BdAM+96] we summarize the common

features of verification diagrams, fairness diagrams, and deductive

model checking. They all can describe and verify infinite-state systems

using a finite representation which can be incrementally constructed,

where verification conditions are local and where global properties can

be checked algorithmically. Diagrams (or sequences of diagrams) are

formal proof objects, which succinctly represent a set of verification

conditions that replaces a combination of textual verification rules.



Thegraphicalnatureof diagramsmakesthemeasierto constructand
understandthan text-basedproofsand specifications.

* Real-Time Systems: The current releaseof our STePsystems(see
below)supportstheverificationofreal-timesystems,modeledasclocked

transition systems. We are collaborating with Dr. Jonathan Ostroff

of York University, Canada, who is using STeP in the compositional

verification of real-time systems. Dr. Ostroff visited our group and

is providing feedback on the application of the system to large-scale,

compositional real-time verification [ON96, Ost97].

• Hybrid Systems: In [dAKM97], we present a methodology for the

verification of temporal properties of hybrid systems. The method-

ology is based on the deductive transformation of hybrid diagrams,

which represent the system and its properties, and which can be algo-

rithmically checked against the specification. This check either gives

a positive answer to the verification problem, or provides guidance for

the further transformation of the diagrams. The resulting methodol-

ogy is complete for quantifier-free linear-time temporal logic.

We have also continued our collaboration with Prof. Tom Henzinger

(see Cornell/Berkeley subcontract below).

• Probabilistic System Verification: In [dA97], we present a method-

ology for the verification of performance and reliability properties of

discrete real-time systems. The methodology relies on a temporal logic

that can express bounds on the probability of events and on the av-

erage time between them. The semantics of the logics is defined with

respect to timed systems that exhibit both probabilistic and nonde-

terministic behavior. We developed model checking algorithms for the

algorithmic verification of the specifications.

• Deductive Support (STEP): We have continued work on our imple-

mentation testbed, the Stanford Temporal Prover (STEP) [BBC+96],

which combines deductive methods with algorithmic techniques to ver-
ify linear-time temporal logic specifications of reactive and real-time

systems. STeP uses verification rules, verification diagrams, automat-

ically generated invariants [BBM97], model checking, and a collection

of decision procedures, to verify finite- and infinite-state systems.

An initial version of STeP (version 1.1) has been released [BBC+95],

and is being used for educational and research purposes in over 30 sites



aroundthe world. At Stanford,STePand its deductivecomponents
arebeingusedin courseson formal verificationandintroductory logic
for computerscience.Informationonobtainingthesystemis available
by sendinge-mail to step-request©CS.Stanford.EDU.Seealso

http://theory.stanford.edu/-zm/step.html.

Version 1.2, ported to the latest relase of SML of New Jersey (109.x),

will be available soon, including a Linux version of the system.

Improvements done in 1996 include: stronger decision procedures;

rules for modular verification; visual representation of proof searches;

support for the verification of real-time systems; and improved inter-

faces for the non-clausal resolution-based theorem proving component.

Experimental features of STeP developed in 1996 include: a prelimi-

nary implementation of deductive model checking [SUM96a] and au-

tomata for monadic second order logic, which can automatically verify

a class of parameterized programs. More powerful deductive support,

integrating decision procedures and first-order reasoning, has been de-

veloped and implemented, in collaboration with Dr. Mark Stickel at

SRI International [BSU96] (see below).

A Java implementation of Manna and Waldinger's Deductive Tableau

proof system, based on non-clausal resolution, was developed this year.

This tool was used in teaching CS157 (Introduction to Logic and Au-

tomated Reasoning) at Stanford. It will be available for educational

use, and will serve as the basis for further work in deductive synthesis.

Industrial collaboration.: We have continued our contact with re-

searchers from SUN and Intel. STeP has been used to verify circuits
proposed by Intel and SUN. We have initiated further industrial col-

laborations (e.g. Yago Systems) that will explore how our deductive

technology can be applied to complex hardware designs, which will

drive new research and development.

SRI subcontract

• Deductive Support: In collaboration with Dr. Mark Stickel at SRI,

we developed a procedure for proving the validity of first-order for-

mulas in the presence of decision procedures for an interpreted subset



of the language[BSU96]. The procedureis designedto be practi-
cal: formulascanhavelargecomplexbooleanstructure, and include
structure sharingin the form of let- expressions.We accommodate
differentkindsof decisionprocedures,from thosethat cansuggestre-
futing instantiations to thosethat cannot. The procedurehasbeen
implementedaspart of STEP.Although the procedureis incomplete,
it is able to eliminate the needfor user interaction in the proofsof
manyverificationconditions.

Program Synthesis: In collaborationwith Dr. RichardWaldinger,
recenteffortshavebeendevotedto the synthesisof programswhich
havesideeffectsas part of their intendedbehavior. As an applica-
tion domainfor the synthesisof imperativeprograms,wehavebeen
constructingpictures,graphicaldisplays,andanimatedcartoonsfrom
declarativespecifications.This hasmanypotential applications,in-
cludingthe automateddevelopmentof visualdisplaysto illustrate the
resultsof computations.

The declarativespecificationscandescribetheentities (geometricfig-
ures,photographs,piecesof text, andevenfilm clips)andrelationships
betweenthem(left andright, biggerandsmaller).Explicit statesallow
the descriptionof changesin the configuration.

Cornell/Berkeley subcontract

On January 1, 1996. Prof. Henzinger moved from Cornell to the University

of California at Berkeley. There we continued to develop the theory and

improve the practice of model checking for real-time and hybrid systems.

• Theory of real-time model checking: We developed an on-the-fly

algorithm, which is the first method for real-time model checking that

is optimal with respect to both time and space requirements [HKV96].

We also discovered a reduction of real-time model checking to untimed

model checking, which dramatically increases the applicability of ex-

isting tools [KH97].

In a recent development, we propose and study a new formal model for

real-time and hybrid system which is more robust than previous ap-

proaches [GHJ97]. In particular, if a robust timed automaton accepts

a real-time sequence of inputs, then it must also accept all sequences

where the input times are slightly perturbed.

6



Theory of hybrid model-checking: Weclassifiedhybridautomata
as to whether they inducefinite bisimilarity, similarity, or language-
equivalencequotients[HK96]. This classificationgivesriseto a struc-
tural explanationof previousdecidabilityresultsandto improvedver-
ification algorithms[Hen96].

Practice of hybrid model checking: After switching from formula-

based to polyhedra-based algorithms, we have been steadily improving

HyTech, our symbolic model checker for hybrid automata. The current

release, HyTech 1.04, is available at

http://www.eecs.berkeley.edu/-tah/.

The improvements are driven by case studies that involve parameter-

synthesis tasks and nonlinear behavior [HW96].

Future Research (1997)

Our research plans for the following year include:

• Integration of Techniques: Further integration of deductive and

algorithmic techniques. We will examine more closely how automata-

theoretic techniques can be used in the general case of infinite-state

systems.

• Graphical Formalisms: Although our graphical formalisms are in-

teractive in nature, we want to identify the areas where automation

can be most useful, to minimize the necessary interaction.

We also plan to develop a uniform graphical environment, implemented

in Java, which can be used to apply the various graphical formalisms

we have developed, using a common set of tools.

• Hybrid Systems: Develop a practical graphical environment for the

verification of hybrid systems. This includes exploring further the com-

bination of the deductive and algorithmic approaches in the context

of hybrid systems, and using the graphical toolkit mentioned above.

• Modular Verification: Develop practical techniques that enable the

modular verification of concurrent and real-time systems. This in-

cludes, for example, finding efficient methods for determining the va-

lidity of complex temporal verification conditions.



Verification of Object-Oriented Programs: Apply the temporal
logic methodologyto the verificationof object-orientedsystems;in
particular, identify compositionalandmodularverificationtechniques
that canhandleand exploit the abstraction,encapsulationand spe-
cialization features of object-oriented languages.

Hardware-Specific Applications: Adapt and specialize the tech-

niques used in STeP to the special case of hardware systems, finding

methods for generating hardware invariants, and developing special-

ized deductive support for finite-state systems.

Program Synthesis: Identify new practical applications of deductive

program synthesis, and develop a synthesis environment that can use

the deductive tools already embodied in our STeP system.

Model checking for Hybrid and Real-time Systems: Continue

to extend the practical applicability of our model checking methods

for hybrid and real-time systems, following the insights provided by
our recent theoretical results.

Publications (1996)

The following references are publications supported by this grant in 1996.

Selected entries, marked with ,, are included with this report.

[BBC+96] N. S. Bjorner, A. Browne, E. Chang, M. ColSn, A. Kapur,

Z. Manna, H.B. Sipma, and T.E. Uribe. STEP: Deductive-algorithmic ver-

ification of reactive and real-time systems. In Proc. 8 th Intl. Conference

on Computer Aided Verification, volume 1102 of LNCS, pages 415-418.

Springer-Verlag, July 1996. ,

[BBM97] N.S. Bjorner, A. Browne, and Z. Manna. Automatic generation

of invariants and intermediate assertions. Theor. Comp. Sci., 1997. To

appear. ,

[BdAM+96] A. Browne, L. de Alfaro, Z. Manna, H.B. Sipma, and T.E.

Uribe. Diagram-based formalisms for the verification of reactive systems.

In CADE-14 Workshop on Visual Reasoning, 1996. ,

[BMS96] A. Browne, Z. Manna, and H.B. Sipma. Hierarchical verification

using verification diagrams. In Second Asian Computing Science Conf.,

volume 1179 of LNCS, pages 276-286. Springer-Verlag, December 1996. *



[BSU96]N.S.Bjorner, M.E. Stickel,and T.E. Uribe. A practical combina-
tion of first-order reasoningand decisionprocedures.ComputerScience
Department,StanfordUniversity.Submitted,December1996.

[dA97] L. de Alfaro. Temporallogicsfor the specificationof performance
andreliability. In I4th Syrup. on Theoretical Aspects of Computer Science,

February 1997. ,

[dAKM97] L. de Alfaro, A. Kapur, and Z. Manna. Hybrid diagrams: A

deductive-algorithmic approach to hybrid system verification. In I4th

Syrup. on Theoretical Aspects of Computer Science, February 1997. ,

[dAM96] L. de Alfaro and Z. Manna. Temporal verification by diagram
transformations. In Proc. 8 th Intl. Conference on Computer Aided Verifi-

cation, volume 1102 of LNCS, pages 287-299, July 1996. *

[GHJ97] V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed au-

tomata. In Proceedings of the First International Workshop on Hybrid and

Real-time Systems (HART), LNCS. Springer-Verlag, 1997. To appear.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proc. 1lth

IEEE Syrup. Logic in Comp. Sci., pages 278-292. IEEE Computer Society
Press, 1996.

[HK96] T.A. tIenzinger and P.W. Kopke. State equivalences for rectan-

gular hybrid automata. In Seventh International Conference on Concur-

rency Theory (CONCUR), volume 1119 of LNCS, pages 530-545. Springer-

Verlag, 1996.

[HKV96] T.A. Henzinger, O. Kupferman, and M.Y. Vardi. A space-efficient

on-the-fly algorithm for real-time model checking. In Seventh International

Conference on Concurrency Theory (CONCUR), LNCS, pages 514-529.

Springer-Verlag, 1996.

[HW96] T.A. Henzinger and H. Wong-Toi. Using HYTECH to synthesize

control parameters for a steam boiler. In Formal Methods for Industrial

Applications: Specifying and Programming the Steam Boiler Control, vol-

ume 1165 of LNCS. Springer-Verlag, 1996.

[KH97] O. Kupferman and T.A. Henzinger. From quantity to quality. In

Proceedings of the First International I_brkshop on Hybrid and Real-time

Systems (IL4RT), LNCS. Springer-Verlag, 1997. To appear.



[SUM96a]H.B. Sipma,T.E. Uribe, andZ. Manna.Deductivemodelcheck-
ing. In Proc. 8th h_tl. Conference on Computer Aided I'erification, volume

1102 of LNCS, pages 208-219. Springer-Verlag, July 1996. *

[SUM96b] H.B. Sipma, T.E. Uribe, and Z. Manna. Model checking and de-

duction for infinite-state systems. Computer Science Department, Stan-

ford University. Submitted, December 1996.

Other References:

[BBC+95] N.S. Bjorner, A. Browne, E. Chang, M. Col6n, A. Kapur,

Z. Manna, H.B. Sipma, and T.E. Uribe. STEP: The Stanford Tem-

poral Prover, User's Manual. Technical Report STAN-CS-TR-95-1562,

Computer Science Department, Stanford University, November 1995. *

[ON96] J.S. Ostroff and H.K. Ng. Verifying real-time systems using un-

timed tools. In Proc. Third AMAST Wort'shop on Real-Time Systems,

pages 132-146, March 1996.

lOst97] J.S. Ostroff. A visual toolset for tile design of real-time discrete

event systems. IEEE Trans. on Control Systems Technology, May 1997.

To appear.

10


